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1. Summary

This is the second technica l report and also the final report for

Grant No. AFOSR-78—31e8l . This research effort had three main objectives :

1) Use a newl y developed method for the linea r inversion of seismograms

to study the source mechanism of explos i ons and earthquakes; 2) Continue

the study of forward and i nverse prob l ems for wave propagation in a layered

anelastic earth; and 3) Study the bandwidth requirements of well-behaved

discriminants. Results pertaining to the second objective are contained

in Techn i cal Report No. 1 (24 Jul y 1978), results pertaining to the

first objective are contained in part 2 of the present report , and

implications for the third objective can be found in both of these

reports.
B

A method has been developed which treats wave propagation in a

l ayered anelastic med i um in an exact manner. These results are particularl y

important for problems wh i ch involve near surface sediments and soils

because the approximate methods which are normall y used for anelastic

wave propagation are insufficient for these hi ghly attenuating materials.

The method has been developed for both body waves and surface waves and

for both forward and i nverse problems . The advantages of the exact over

the approximate formulation appear to be most important in the i nverse

prob l ems.

A genera l method of estimating the first-deg ree spatial moment

tensor of a seismic source has been developed and applied to data recorded
r

e~~~ f at the Nevada Test Site. Acceleration data recorded w thin a few kilometers

I
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of the explos i on HANDLEY and a collapse event of the explos ion JORUM

have been stud i ed so far. The exp losion is predominantly a dilatation

with an asymmetry in the vertica l direction wh i ch may represent the effect

of the free surface. The time history Is an initial step with a rise

time less than half a second followed by a larger pulse with a slower

rise time . This second pulse may also be related to the effect of the

free surface. The collapse event is predominantl y a compression and

is also asymmetric in the vertica l direction . The time history has a

— 
much more gradua l beg inning and a longer rise time than in the case

of the explos ion.

The use of broadband data was crucial in the two genera l studies

• completed under this grant. Even so, in both cases there were ind i cations

• 
~
- that better results might have been obtained if the bandwidth of the

data had been greater.

I

_ _ _ _  

j
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2. Moment Tensors for an NTS Exp los i on and Collapse

One of the objectives of this research effort has been to continue

our study of the manner in wh i ch elastic waves are generated near an

underground explosion . This has been pursued by attempting to model

broadband acceleration seismograms obtained at distances of a few km

from exp losions at the Nevada Test Site. Bel ow we describe the results

that were obtained for the explos ion HANDLEY and for a collapse event

of the explos i on JORUM .

Fi gure 1 shows the deployment of the accelerometers. Each insturment

site consisted of three components of force-balance accelerometers which

had a flat response to acceleration in the band from 0 to 80 Hz. The

analysis was performed on di g ital data with a four-pole low-pass anti-alias

filter at 10 Hz and a sample rate of 54 samples per second .

The method of anal ysis is that described by Stump and Johnson

(Bull. Seism. Soc. Am., 67, 1489- 1 502 , 1977). It is assumed that the

wave l engths of interest are long compared to the source dimensions so

that the displacement can be represented as

• uk(x ,t) = Gkl 3
(x,t;O ,O) 0 M..(O,t)

where Gk. is the elastodynamic Green ’s function , M.. is the first-degree
I •

spatial moment tensor of the source, and 0 denotes tempora l convolution .

In this study a homogeneous elastic halfspace was assumed in calculating

the Green ’s function Gki . Given these Green ’s functions and the observational

data Uk, one can estimate the six i ndependent components of the second-rank

L
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symmetric moment tensor 14...
IJ

The explosion HANDLEY was detonated on 26 March 1970 in  tuff at a

depth of 1206 meters below the surface and 819 meters below the water

table. Its Wood-Anderson magnitde was 6.3. Good data were obtained from

the sites 1 , 2, 4, and 5 shown in Fi gure 1 and the acceleration records

are reproduced in Fi gure 2.

The data in Fi gure 2 were inverted using a Green ’s function for a

homogeneous ha l fspace to obtain an estimate for the moment tensor of

the source. The spectra of the time derivative of these estimates of

the momen t tensor components are shown in Figure 3. Also shown is the

spectra of the time derivative of the trace of the moment tensor , which

is usually taken to represent the explosive part or more precisel y the

i sotropic part of the source.

The results in Fi gure 3 exhibit a corner frequency of about 4 Hz

and a hi gh frequency slope of about -3. Also note that there is a

gradua l rise In the spectra at the l owest frequencies. The diagonal

components of the moment tensor are considerably larger than the

off—diagona l components (note the change in scale) and the M
33 component

Is slightly larger than the other two diagonal components. The fact

that the M12 component is very small plus the fact that the and

~22 components are nearl y equal is an indication that the amount of

• strike—sli p motion in the source is very small.

The phase corresponding to the modulus p lotted in Figure 3 was

also estimated so the components of the moment tensor can also be plotted

In the time domain , as is done in Figure ~i. A number of general conclusions

• 

. 

•

S

. 
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HAN DLEY

VERTICAL RADIAL TRANSVERSE
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Fi gure 2. Three-component acceleration data from sites 1 , 2, 4, and 5
for the explos i on HANDLEY. In each case the upper trace is
the observed data and the lower trace is tha t calculated from

• the source model derived in this stud y for HANDLEY . The
vertica l bar represents an ~mp l itude scale which has the samevalue in every case.
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Fi gure 3. Amp l i tude density spectra (so l id  l ines) of the components of the
f i rs t  time der ivat ive of the moment tensor estimated for the

• - explos ion HAN DLEY p lus est imates of the standard dev iat ion
• (dashed l ines ). The spectrum at the bottom is for the trace

of the moment tensor.
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fol low from Figure Li. The diagonal components of the moment tensor are

much larger than the off-diagonal components. The M33 component is larger

than the M 11 and 
~22 components so the source is not comp letel y isotrop ic.

A phys ical model to explain th is mig ht be an explos ion in which the

expans ion in the ver ica l direct ion exceeds that in the hor izontal  d i r ec t i ons .

In v iew of the vert ical s t r a t i f i c a t i o n  of the med ium and the presence of

the free surface , such an asymmetry is not unreasonable.

The 3 Hz osc i l l a t i on  evident on the time de r i va t i ve  of the moment

tensor ii , Figure ~i is due to a spectra l peak of th is frequency in the

results of Figure 3 and can be traced back to a hole in the Green ’s

funct ion used i i  the invers ion . Such a hole would be unl ike ly in a

Green ’s function for a more r e a l i s t i c  c rus ta l  s t ructure , arId thus l i t t l e

importance should be given to th is  o s c i l l a t i o n .

The d iagona l components of the moment tensor shown in Fi gurc Li a l l

have approx imately the same shape. It cons is ts  of an i n i t i a l  d i l a t a t i o n

w i th a r ise time of less than half a second fol lowed by a much larger

d i la ta t ion  beginning abou t 1 second after the orig in time and r is ing

to a maximum about 3 seconds after the ori g in time . There is an apparent

decrease beyond 3 seconds but this may be an effect of limited resolutio n

at the low frequencies.

The shape of the very low frequencies cf the moment tensor spectra

(Fi gure 3) was an interesting result which was investi gated further.

This trend in the results can be traced back to the orig inal data (Fi gure 2)

• where i t may be related to the fact that the data were all recorded

w i th accelerometers which have re la t i ve ly less resolut ion at the low

frequenc ies compared to the hi gh frequencies. To determine the influence
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of this trend in the low frequencies , it was removed by hi gh-pass filtering

the data to the extent that the spectra were approxomate l y flat at the low

frequencies. Then the entire inversio ,1 process was repeated to obtain

the results shown in Figure 5. Comparing these results with those in

Figure 4 shows that , as one m ight expec t , only the long period part

of the results has been affected . Thus Fi gures 4 and 5 represent two

versions of the moment tensor , depending upon whether the long period

trend in the data is considered to be rea l or spurious.

— 
This genera l prob l em of the long period t rend in the data is s t i l l

not satisfactoril y resolved and needs further study. One approach is

to record the data with both acceleration and disp lacement responses

so as to broaden the frequency band where good resol uti on is ach i eved .

Another approach is to increase the dynami c range of the accele rat ion

recording system .

A common method of j udging the validity of a source model is to

compare the synthetic data predicted by this model w it h the obs erved

• data. This is done for the method of this report in Fi gu re 2 whe re

the lower member of each pair was calc ulated by combining the source

model in Figures 3 and 4 wi th the Green ’s funL tion of a homogeneous

halfspace . Al though there are some obvious discrepancies , the agreement

is not unreasonable and is actually quite good on the vertica l components.

An i mportant point is that many of the features of fairly complex

acceleration seismograms can be explained with a very simple source and

crus tal model. On the other hand , i t has not been shown that this is

a uni que in terpretation .

- 
j
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As a further attempt to test our method of stud y ing seismic sources ,

i t was applied to a collapse event of the explos i on JORUM . The deployment

of the recording stations is shown in Figure 1. The collapse occurred

at l7h 31 m on 16 September 1969 which was about 3 hours after the JORUM

event. The collapse was located within 80 m of the initial explosion

wh i ch was i n tuff at a depth of 570 m. The Wood-Anderson magnitude of

the collapse was 4.3. The data recorded by the six stations which

successfully recorded the collapse are shown in Figure 6.

— 
The data in Fi gure 6 are quite different from those of an explos i on

such as Fi gure 2. The beginning is eme rgen t , there are no clear phases ,

and the duration is longer than for an explos i on.

The results of appl y ing the inversion process to the colla pse da ta

are shown in the frequency domain in Fi gure 7 and in the t ime domai n

in Figure 8. A comparison of the moment tensor for the collapse and

explosion (Fi gures 8 and 4) reveals both similarities and differences.

The diagona l terms of the moment tensor for the collapse are dominant

as in the case of the explos i on but now they have the opposite sign.

Thus the collapse appears to be an imp los i on, just as one might expect.

• Again the M33 
component is larger than the and 

~22 components wh i ch

ind i cates an asymmetry in the vertica l direction . The time function

for the collapse has a much more gradua l beginning and a much l onger

rise time than in the case of the explosion (note the difference

in time scales in Figures 8 and 4).

- -
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- FI gure 6. Three-component accelerat ion data from si tes 1-6 for a collapse event
of the exp los ion JORUM. In each case the upper se ismogram is observed
and the bottom is calculated .
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f i rs t  time der ivat ive of the moment tensor estimated for the

-

. JORUM collapse plus estimates of the standard deviation (dashed lines ).
The spectrum at the bottom is for the trace of the moment tensor.
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